5 РАСПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНЫХ СЕЙСМИЧЕСКИХ НАГРУЗОК МЕЖДУ ПРОСТЕНКАМИ И ОПРЕДЕЛЕНИЕ УСИЛИЙ ОТ СЕЙСМИЧЕСКОЙ НАГРУЗКИ

5.1 Теоретические сведения

Зная сейсмические нагрузки, приложенные к стенам по каждой оси, можно определить, какую часть нагрузки воспринимает каждый из простенков.

Последовательность расчета изложена ниже.

1). Определяют перемещения в уровне середины первого этажа в простенке номер S, расположенном по оси m.

$$\delta_{\rm ms} = \frac{\frac{H^2}{b_s^2} + 5}{b_s},$$

где H – высота здания от уровня крыльца до чердачного перекрытия;

 $b_{\rm s}$ – ширина простенка;

s – номер простенка.

2). Определяют условную жесткость простенка

$$B_{\rm ms}=\frac{1}{\delta_{ms}}.$$

3). Определяют суммарную жесткость всех простенков стены

$$B_{\rm m} = \sum_{s=1}^n B_{ms} .$$

4). Определяют коэффициент распределения поперечной сейсмической силы на простенок. Этот коэффициент характеризует долю поперечной силы, приходящуюся на простенок.

$$\mu_{\rm ms} = \frac{B_{ms}}{B_{...}}.$$

5). Определяют значение сейсмических поперечных сил в уровнях междуэтажных перекрытий от первого до k-того

$$S_{k ms} = \mu_{ms} \cdot S_{k m}^{\kappa p}$$
.

В итоге строится эпюра поперечных сил, действующих на простенок. Поэтажные сейсмические силы, приложенные в уровнях перекрытий, определяют как разность ординат эпюры. Затем, рассматривая стену, как консоль, строят эпюру изгибающих моментов.

Аналогичный расчет выполняется для всех стен и всех простенков здания.

Таблица 4.1 – Определение коэффициента ν_m для расчета поперечных стен

Номер оси стены т	$A_{ m m}, \ { m m}^2$	$\mu_{ m m}$	$\dfrac{\overline{L_{_{m}}}}{L}$	$ u_{ m m}$
1,13	6,44	0,185	0,085	0,145
3,11	4,45	0,128	0,125	0,127
4,10	4,1	0,118	0,165	0,137
7	4,8	0,138	0,25	0,183

Таблица 4.2 – Определение сейсмических нагрузок на поперечные стены

		$S_{km} = u_m \cdot \Sigma S_{ m k} \; ,$			$S_{km}^{\kappa p} = S_{km} \cdot (1 + \lambda_{\mathrm{m}})$				
Номер си	Поперечная	без учета кручения для осей номер			с учетом кручения для осей номер				
	сила ΣS _k (рисунок 3.1, в)	1, 13	3, 11	4, 10	7	1, 13	3, 11	4, 10	7
		$v_1 = 0,145$	$v_3 = 0,127$	$v_4 = 0,137$	$v_7 = 0,183$	$\lambda_1 = \lambda_{13} = 0,2$	$\lambda_3 = \lambda_{11} = 0.132$	$\lambda_4 = \lambda_{10} = 0,1$	$\lambda_7 = 0$
4	1635,9	237,2	207,8	224,1	299,4	284,6	235,2	246,51	299,4
3	2852,4	413,6	362,3	390,8	522	496,3	410,1	429,9	522
2	3649,8	529,2	463,5	499,9	667,9	635	524,7	549,9	667,9
1	3888,6	563,8	493,9	532,7	711,6	676,6	559,1	586	711,6

5.2 Задача № 7

Определить поперечные силы и изгибающие моменты в простенке № 2 поперечной стены, расположенной по оси 3 (симметрично оси 11).

5.2.1 Исходные данные

Поперечное сечение стены по оси 3 приводится на рисунке 5.1. Оно состоит из двух простенков: простенка № 1 размером 380×6500 мм и простенка № 2 размером 380×5200 мм. Высота здания от уровня крыльца (рисунок 2.2) принимается по данным задачи № 5: $H = x_4 - \frac{h}{2}$, где h — высота подвального этажа. Значения сейсмических поперечных сил для стены по оси 3 с учетом кручения принимаются по данным задачи № 6 (таблица 4.2).

5.2.2. Решение

Высота здания

$$H = x_4 - \frac{h}{2} = 1277 - \frac{278}{2} = 1138 \text{ cm},$$

где x_4 = 1277 см − из условия задачи № 5;

h = 278 см - высота подвального этажа.

Определяем перемещения для простенка $N \ge 1$ (S = 1) по оси 3 (m = 3)

$$\delta_{\text{ms}} = \delta_{31} = \frac{\frac{H^2}{b_1^2} + 5}{b_1} = \frac{\frac{1138^2}{650^2} + 5}{650} = 0,0124$$

и простенка № 2 той же оси

$$\delta_{32} = \frac{\frac{H^2}{b_2^2} + 5}{b_2} = \frac{\frac{1138^2}{520^2} + 5}{520} = 0,0203.$$

Здесь b_1 и b_2 – ширина простенков (рисунок 5.1).

Определим условные жесткости простенков.

$$B_{31} = \frac{1}{\delta_{31}} = \frac{1}{0,0124} = 80,6;$$

$$B_{32} = \frac{1}{\delta_{32}} = \frac{1}{0,0203} = 49,2.$$

Суммарная жесткость стены

$$B_3 = B_{31} + B_{32} = 80.6 + 49.2 = 129.8.$$

Находим коэффициенты распределения поперечной сейсмической силы на простенки:

$$\mu_{31} = \frac{B_{31}}{B_3} = \frac{80.6}{129.8} = 0.621;$$

$$\mu_{32} = \frac{B_{32}}{B_3} = \frac{49.2}{129.8} = 0.379.$$

Определяем значения сейсмических поперечных сил на каждый из простенков на уровне четвертого (чердачного) перекрытия (k = 4), используя данные таблицы 4.2.

$$S_{kms} = S_{431} = \mu_{31} \cdot S_{43}^{\kappa p} = 0,621 \cdot 235,2 = 146,1 \text{ kH};$$
 $S_{432} = \mu_{32} \cdot S_{43}^{\kappa p} = 0,379 \cdot 235,2 = 89,1 \text{ kH}.$

Аналогично находим сейсмические силы для других перекрытий: третьего

$$S_{331} = 0.621 \cdot 410, 1 = 254,7 \text{ kH};$$

 $S_{332} = 0.379 \cdot 410, 1 = 155, 4 \text{ kH};$

второго

$$S_{231} = 0,621.524,7 = 325,8 \text{ кH};$$

 $S_{232} = 0,379.524,7 = 198,9 \text{ кH};$

первого

$$S_{131} = 0,621.559,1 = 347,2$$
 кH; $S_{132} = 0,379.559,1 = 211,9$ кH.

По найденным значениям поперечных сил построим эпюры (рисунки 5.2, а и 5.3, а).

Результаты расчета приводятся в таблице 5.1.

Затем определим поэтажные сейсмические силы, приложенные в уровнях перекрытий, как разность ординат (рисунки 5.2, б и 5.3, б). После этого, рассматривая стены, как консоли, построим эпюры изгибающих моментов (рисунки 5.2, в и 5.3, в).

На этом определение усилий от сейсмических нагрузок заканчивается. Далее производится проверка несущей способности кладки, для чего можно использовать программу "Камин" программного комплекса "SCAD".

Таблица 5.1 – Поперечные силы в простенках № 1 и № 2 по оси 3

Номер		Поперечная сила под перекрытием номер				
простенка	$\mu_{3\mathrm{s}}$	4	3	2	1	
1	0,638	146,1	254,7	325,8	347,2	
2	0,362	89,1	155,4	198,9	211,9	
Σ	1	235,2	410,1	524,7	559,1	